
Improving frequent subgraph mining in the presence of symmetry

Christian Desrosiers Philippe Galinier Pierre Hansen Alain Hertz

1 Introduction

The difficulty of the frequent subgraph mining prob-
lem arises from the tasks of enumerating the sub-
graphs and calculating their support in the dataset.
If the dataset graphs have additional information in
the form of labels, these problems can be solved quite
easily. However, if the dataset graphs are unlabeled
or only have a few labels, then the complexity of
these problems greatly reduces the number and sizes
of the dataset graphs that can be managed. Thus
far, researchers working on the frequent subgraph
mining problem have given little attention to such
datasets, and current algorithms tend to do poorly
on them. Yet, there are many applications which
deal with this type of data, mainly in the fields of
compute vision where the data is structured as 2D
or 3D meshes [8], or communication/transportation
networks where the information is mostly topological.

To reduce the cost of support calculation, most fre-
quent subgraph mining algorithms, such as FFSM [2]
and Gaston [7], use complex data structures that
store the embeddings of subgraphs in the dataset.
Yet, when dealing with unlabeled graphs or graphs
that have a few labels, which may have an exponen-
tial number of embeddings, such structures are highly
inefficient. In this paper, we present some strate-
gies that reduce the number of support calculations
in a dataset of graphs having a few labels, without
the use of memory-expensive structures, and allow
to efficiently enumerate graphs without redundancy.
Most of these strategies are improvements made to
a frequent subgraph mining algorithm we have de-
veloped, called SyGMA [1]. Although our algorithm
only deals with vertex labels, it is possible to trans-
form any graph with N (labeled) vertices and L edge
labels into a graph having no edge label and at most
N log L vertices, as shown in [5].

2 The algorithm

The main lines of our algorithm are similar to Ku-
ramochi and Karypis’s vSiGraM algorithm1 [4].
Starting with a graph G containing a single frequent
edge, we recursively extend G by adding a new edge,
or a new vertex connected to G. To determine if G
should be extended, we first obtain a vertex permu-
tation ϕ for which the sequence of elements in the
permuted adjacency matrix of G is minimal. Such a
permutation, called canonical labeling, is found using
McKay’s program Nauty [6]. In the process, we also
obtain the orbits of vertices and vertex pairs of G. We
then use ϕ to partially order the edges of G as fol-
lows. Denote Orb(u, v) the orbit of a pair of vertices
u, v, and let e1 = (u1, v1), e2 = (u2, v2) be two edges
of G such that ϕ(u1) < ϕ(v1) and ϕ(u2) < ϕ(v2).
The edge ordering is such that e1 ≺ e2 if and only
if Orb(e1) 6= Orb(e2) and either ϕ(u1) < ϕ(u2) or
u1 = u2 ∧ ϕ(v1) < ϕ(v2).

Using this ordering, we then find the minimum
non-disconnecting edge e∗ of G. Let e be the last
extension edge of G, we prune G if e is not in the
same orbit as e. This is more efficient than the tech-
nique used by vSiGraM, which consists in testing
that G − e is isomorphic to G − e∗, and thus cost-
ing one graph isomorphism test. If G is not pruned,
we then compute its support in the dataset. If G is
frequent we extend it as follows. Let L be the set of
labels of the graphs containing G. For each vertex
orbit Ov and each label l of L, we extend G by con-
necting a new vertex of label l to a single vertex v of
this orbit. Likewise, for every orbit of unconnected
vertex pairs Op, we connect a single pair of vertices
u, v of Op.

In order to reduce the number of permutations con-
sidered by Nauty we use vertex invariants to parti-
tion the vertices of G, and only consider permuta-
tions of vertices within the cells of the partition. For
reasons that will become clear later, we present two
ways of partitioning the vertices. In the first par-

1Note that vSiGraM is not for the frequent subgraph min-
ing problem.

1

Refinement procedure
Input: An initial partition π0.
Output: A refined partition π.

t := 0 ;
repeat

t := t + 1 ;
πt := πt−1 ;
foreach cell Vi ∈ πt do

foreach cell Vj ∈ πt such that |Vj | > 1 do
Divide Vj in a partition
πtj = (Vj1, . . . , Vjk) s.t. ∀u, v ∈ Vj ,
πtj(u) < πtj(v) ⇔ δ(u, Vi) > δ(v, Vi) ;

until πt = πt−1 ;

return π = πt ;

Figure 1: The refinement procedure.

titioning, we start by dividing the vertices in two
cells, the first containing the vertices that are not
incident to any disconnecting edge, and the second
cell the rest of the vertices. This is done so that the
minimum edge according to ϕ will never be a dis-
connecting edge. We then subdivide the vertices of
these two cells such that vertices with the same de-
gree are in the same subcells, and sort these subcells
by increasing degree. We then repeat the same pro-
cess, this time splitting the vertices of the resulting
cells by increasing label. Finally, we further refine
this partition using the procedure shown in Figure
1. Denote δ(v,W) the number of vertices of W ⊆ V
adjacent to v, and let π(v) be index of the cell of a
partition π containing v. The refinement procedure
produces a partition π such that for all u, v ∈ V ,
π(u) = π(v) ⇔ ∀Vi ∈ π, δ(u, Vi) = δ(v, Vi). The
second way of partitioning the vertices is identical to
the first, except that, in the second step, we partition
the vertices by decreasing degree.

3 Improvement strategies

3.1 Redundant graph detection

The first technique, called pre-extension pruning,
prunes some extensions that cannot be minimum in
the resulting graph. To illustrate this technique, sup-
pose that we want to extend a graph G by connecting
two existing vertices u, v, and suppose that we parti-
tion the vertices by increasing degree. Let W contain
the vertices of G which are minimum according to the
canonical labeling. If |W | = 1 then (u, v) can be min-
imum in the extended graph only if either u ∈ W or

v ∈ W , otherwise any non-disconnecting edge touch-
ing the vertex of W would be lesser than (u, v) in the
extended graph, and thus, (u, v) would not be mini-
mal. For the same reason, if |W | = 2, then (u, v) can
only be minimum if W = {u, v}. Finally, if |W | > 2,
then (u, v) cannot be minimum. Using the same idea,
we can develop some low-cost tests to prune exten-
sions in the case where vertices are partitioned by
decreasing degree.

The second detection technique, called post-
extension pruning, detects non-minimum extensions
while refining the vertex partition. Let G be the
graph produced by extension e1 = (u1, v1) and πt

be the partition produced at any step t of the re-
finement procedure. Without loss of generality, sup-
pose that π(u1) ≤ π(v1). We can prune extension
e1 if there exists an edge e2 = (u2, v2) (suppose that
πt(u2) ≤ πt(v2)) such that πt(u2) < πt(u1), or such
that πt(u2) = πt(u1) and πt(v2) < πt(v1).

3.2 Non-redundant graph detection

Although some frequent subgraph mining algorithms
have efficient techniques to detect redundant graphs,
none of them have techniques that detect non-
redundant graphs without having to compute their
canonical representation. For instance, a graph G is
canonical in gSpan if a pre-order traversal following
the numbering of its vertices yields a lexicographi-
cally minimum code. If G is not canonical, then
gSpan stops as soon as it finds another pre-order
traversal yielding a lesser code. However, if G is
canonical, then gSpan needs, in the worst case, to
try an exponential number of traversals.

Let G be a graph that was not pruned by the pre
or post extension pruning, and let π be the partition
returned by the refinement procedure that has m cells
containing more than one vertex. G is non-redundant
if m = 0, or if m = 1 ∧ |π| > |V | − 5, or if m =
2 ∧ |π| > |V | − 4 (see [6] for details).

Although it seems that the above conditions only
apply to very specific cases, in reality, most graphs
actually satisfy these conditions, as we will see in the
experimental section. This is especially true for la-
beled vertices, since these labels greatly reduce the
symmetry of the graph.

3.3 Dynamic coding

Consider an infrequent graph G. The edges of G can
be divided in two sets E+ and E−, such that E+ con-
tains the edges which, when removed from G, produce

2

a frequent graphs, and E− contains the other edges.
If E+ is empty, then G will never be explored. How-
ever, if neither these sets are empty, then G may or
may not be explored, depending on which of these
two sets contain the minimum edge. Although we do
not know beforehand which subgraphs are frequent
and which are not, we do know which ones are more
likely to be. For instance, paths are very likely to
be frequent, since every graph of diameter d has at
least one path of d + 1 vertices. Likewise, trees are
more likely to be frequent than more complex graphs.
Thus, by favouring edges that are likely to produce,
when removed, infrequent subgraphs, we reduce the
odds of having to compute the support of G.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 2: Graphs (b)-(e) are extensions of graph (a)
and graphs (f)-(h) are extensions of graph (e).

The two ways of partitioning the vertices, by
increasing and decreasing degree, lead to different
topologies of the search space. To illustrate this, con-
sider the unlabeled graphs of Figure 2. If we sort
the vertices by increasing order, graph (a) will have
graphs (b) and (c) as extensions. However, if we sort
the vertices by decreasing degree, we then we also
have graphs (d) and (e) as valid extension. The sit-
uation is reversed for graphs that are not paths or
trees. For instance, if we sort the vertices by increas-
ing degree, then graph (e) has graphs (f)-(h) as valid
extensions, while the same graph has no valid exten-
sion if we sort by decreasing degree.

We use this idea as follows. If a graph G is a path
or a tree, i.e., if |E| = |V | − 1, we then sort the
vertices of G by increasing degree, otherwise we sort
these vertices by decreasing degree. This compro-
mise, which limits the number of extensions of path
and trees early in the search, and later limits the ex-
tensions of small compact graphs, has shown to work
well in most cases.

3.4 Avoiding redundant calculations

The next strategy exploits previous calculations to
limit the search of a new subgraph isomorphism, and
is based on the fact that vertices are matched in
a static lexicographic order. Let G be the current
subgraph. We store the lexicographically minimum

matchings of G into all the dataset graphs contain-
ing G. Then, when G is extended, we only search
for matchings superior or equal to the previous ones,
according to the lexicographic order.

3.5 Infrequent graph detection

The last strategy allows to detect extensions leading
to infrequent graphs, based on the following idea. Let
H1 be the extension of a graph G1 with edge e. If
H1 is not frequent then the extension of a graph G2,
such that G1 ⊂ G2, with edge e is not frequent. When
the extension of a graph G with edge e is infrequent,
we store edge e and all equivalent edges, i.e., edges
with the same vertex pair orbit, as invalid extensions.
Then, when extending with edge e a graph H, itself
an extension of G, if e was previously found to be
invalid, it is skipped. This strategy allows us to avoid
many costly subgraph isomorphism tests.

4 Experimentation

The experiments presented in this section were car-
ried out on a 2.0GHz Intel Pentium IV PC with
512Kb cache and 1Gb RAM, running Linux Cent OS
release 4.2. For these experiments, we chose to com-
pare our algorithm with gSpan [10] for two reasons.
Firstly, it is the only efficient algorithm that does not
store embeddings, which makes it suitable for graphs
having few or no labels. Secondly, an investigation
carried out by Wörlein et al. [9] showed that, for
large problem instances, algorithms storing embed-
dings offered no significant advantage over gSpan.

In the first experiment, we evaluate the perfor-
mance and validity of our enumeration strategy by
generating all connected graphs that have at least
one edge, at most N vertices, and at most L vertex
labels. Since the available version of gSpan does not
allow to simply enumerate graphs, we had to imple-
ment our own version of gSpan, optimizing as much
as possible the algorithm. For the other experiments,
though, we used the original version of gSpan.

The results of this experiment are presented in Fig-
ure 3. (a) gives the average number of generated
graphs per non-redundant graph, and evaluates the
efficiency of the pre and post pruning techniques to
detect redundant graphs. Since gSpan employs no
special techniques for this task, we simply put the
number of graphs it generated. We can see that our
algorithm is rather insensitive to the number of ver-
tices and labels, while gSpan shows a clear increase

3

L6
N5

L6
N6

L5
N5

L5
N6

L5
N7

L4
N5

L4
N6

L4
N7

L3
N6

L3
N7

L3
N8

L2
N6

L2
N7

L2
N8

L1
N8

L1
N9

L1
N1

0

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

gspan sygma
no

de
s

/ g
ra

ph

(a)

L6
N5

L6
N6

L5
N5

L5
N6

L5
N7

L4
N5

L4
N6

L4
N7

L3
N6

L3
N7

L3
N8

L2
N6

L2
N7

L2
N8

L1
N8

L1
N9

L1
N1

0
0.00

0.05

0.10

0.15

0.20

0.25

ca
no

ni
ca

l /
 g

ra
ph

(b)

L6
N5

L6
N6

L5
N5

L5
N6

L5
N7

L4
N5

L4
N6

L4
N7

L3
N6

L3
N7

L3
N8

L2
N6

L2
N7

L2
N8

L1
N8

L1
N9

L1
N1

0

1

10

100

1000

gspan sygma

u
se

cs
 /

gr
ap

h

(c)

Figure 3: Subgraph enumeration results.

when the number of labels are reduced and the num-
ber of vertices are increased. Furthermore, (b) gives
the average number of canonical labeling computa-
tions per non-redundant graph, and evaluates the ef-
ficiency of our techniques to detect redundant graphs.
We observe that a very small proportion of graphs
actually required the computation of a canonical la-
beling. Finally, (c) gives the average CPU time (in
microseconds) per non-redundant graph. Again, we
can see that our enumeration strategy is little affected
by the number of vertices and labels, while gSpan
shows an exponential increase as the number of la-
bels is reduced, and the number of vertices increased.
In the most extreme case, i.e., for N = 10 and L = 1,
our algorithm could enumerate all graphs 120 times

faster then gSpan.
In the second experiment, we compare our algo-

rithm to the latest version of gSpan, on the task of
finding the frequent subgraphs of a dataset. Since we
found no available benchmark dataset having a re-
duced number of labels, we decided to generate syn-
thetic datasets using the data generator implemented
by Karypis and Kuramochi for their work in [3]. We
generated 9 datasets using combinations of values of
5 parameters, which description and used values are
given in the following table:

Description Values

D nb. of graphs in the dataset 1000
T avg. size of the dataset graphs {5, 10, 15}
F avg. nb. of frequent subgraphs 25
I avg. size of the frequent subgraphs 15
L n. of vertex labels in the dataset {1, 2, 3}

Figure 4 summarizes the results of this experiment.
It shows, for each dataset, the CPU time (in seconds)
required by gSpan and SyGMA to find the frequent
subgraphs, for decreasing support thresholds. As ex-
pected, the CPU time increases exponentially as we
lower the support thresholds and increase T , due to
the hard subgraph isomorphism problem. We can see
from these results that SyGMA is faster then gSpan
by up to two orders of magnitude for the unlabeled
case, regardless of the value of T . Furthermore, our
algorithm also outperforms gSpan for the case where
graphs have 2 and 3 labels, although the improvement
is not as substantial.

5 Conclusion

We have presented strategies to improve the task of
finding the frequent subgraphs in a dataset with a few
labels. These strategies reduce the number of costly
graph and subgraph isomorphism tests, without using
memory-expensive structures to store embeddings.
Finally, we have shown experimentally that our algo-
rithm significantly outperforms an algorithm for the
same task, gSpan, on synthetic datasets.

References

[1] C. Desrosiers, P. Galinier, P. Hansen, and A. Hertz.
Sygma: Reducing symmerty in graph mining. Tech-
nical Report G-2007-12, Les cahiers du GERAD,
2007.

[2] J. Huan, W. Wang, and J. Prins. Efficient mining of
frequent subgraph in the presence of isomorphism.

4

95 90 85 80 75 70 65 60 55 50 45
0

1

10

100

1000

10000

gspan

sygma

Support threshold (%)

C
PU

 (
se

c)

(a) L=1, T=15

95 90 85 80 75 70 65 60 55 50 45
1

10

100

1000

10000

100000

gspan
sygma

Support threshold (%)

C
PU

 (
se

c)

(b) L=1, T=20

100 95 90 85 75 70
0

1

10

100

1000

10000

100000

gspan

sygma

Support threshold (%)

C
PU

 (
se

c)

(c) L=1, T=25

45 40 35 30 25 20 15 10 7 5 4 3 2
1

10

100

1000

10000

100000

gspan

sygma

Support threshold (%)

C
PU

 (
se

c)

(d) L=2, T=15

55 50 45 40 35 30 25 20 15 10 7 5 4
1

10

100

1000

10000

100000

gspan

sygma

Support threshold (%)

C
PU

 (
se

c)

(e) L=2, T=20

65 60 55 50 45 40 35 30 25 20 15 10
1

10

100

1000

10000

gspan

sygma

Support threshold (%)

C
PU

 (
se

c)

(f) L=2, T=25

15 10 7 5 4 3 2
10

100

1000

10000

gspan

sygma

Support threshold (%)

C
PU

 (
se

c)

(g) L=3, T=15

20 15 10 7 5 4 3 2
1

10

100

1000

10000

gspan

sygma

Support threshold (%)

C
PU

 (
se

c)

(h) L=3, T=20

25 20 15 10 7 5 4 3
1

10

100

1000

10000

gspan

sygma

Support threshold (%)

C
PU

 (
se

c)

(i) L=3, T=25

Figure 4: Runtimes of gSpan and SyGMA on synthetic datasets.

In Proc. of the 3rd IEEE Int. Conf. on Data Mining
(ICDM), pages 549–552, 2003.

[3] M. Kuramochi and G. Karypis. Frequent subgraph
discovery. In Proc. First IEEE Conf. on Data Min-
ing, pages 313–320, 2001.

[4] M. Kuramochi and G. Karypis. Finding frequent
patterns in a large sparse graph. Data Mining and
Knowledge Discovery, 11(3):243–271, 2005.

[5] B. McKay. nauty user’s guide (version 2.2),
http://cs.anu.edu.au/bdm/nauty/nug.pdf. Techni-
cal report.

[6] B. McKay. Practical graph isomorphism. Congr.
Num., 30:45–87, 1981.

[7] S. Nijssen and J. N. Kok. The gaston tool for fre-
quent subgraph mining. In Proc. Int. Workshop on

Graph-Based Tools (Grabats 2004), pages 281–285.
Elsevier, October 2004.

[8] C. Schellewald and C. Schnörr. Probabilistic sub-
graph matching based on convex relaxation. In
EMMCVPR, pages 171–186, 2005.

[9] M. Wörlein, T. Meinl, I. Fischer, and M. Philippsen.
A quantitative comparison of the subgraph miners
mofa, gspan, ffsm, and gaston. In PKDD, pages 392–
403, 2005.

[10] X. Yan and H. Jiawei. gspan: Graph-based substruc-
ture pattern mining. In Proc. 2002 IEEE Int. Conf.
on Data Mining (ICDM’02), pages 721–724. IEEE
Computer Society, 2002.

5

